3.85 \(\int \frac {\log (e (\frac {a+b x}{c+d x})^n)}{f+g x+h x^2} \, dx\)

Optimal. Leaf size=401 \[ -\frac {\log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right ) \log \left (1-\frac {2 (a+b x) \left (c^2 h-c d g+d^2 f\right )}{(c+d x) \left (-\sqrt {g^2-4 f h} (b c-a d)+2 a c h-a d g-b c g+2 b d f\right )}\right )}{\sqrt {g^2-4 f h}}+\frac {\log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right ) \log \left (1-\frac {2 (a+b x) \left (c^2 h-c d g+d^2 f\right )}{(c+d x) \left (\sqrt {g^2-4 f h} (b c-a d)+2 a c h-a d g-b c g+2 b d f\right )}\right )}{\sqrt {g^2-4 f h}}-\frac {n \text {Li}_2\left (\frac {2 \left (h c^2-d g c+d^2 f\right ) (a+b x)}{\left (-\sqrt {g^2-4 f h} (b c-a d)+2 b d f-b c g-a d g+2 a c h\right ) (c+d x)}\right )}{\sqrt {g^2-4 f h}}+\frac {n \text {Li}_2\left (\frac {2 \left (h c^2-d g c+d^2 f\right ) (a+b x)}{\left (\sqrt {g^2-4 f h} (b c-a d)+2 b d f-b c g-a d g+2 a c h\right ) (c+d x)}\right )}{\sqrt {g^2-4 f h}} \]

[Out]

-ln(e*((b*x+a)/(d*x+c))^n)*ln(1-2*(c^2*h-c*d*g+d^2*f)*(b*x+a)/(d*x+c)/(2*b*d*f-b*c*g-a*d*g+2*a*c*h-(-a*d+b*c)*
(-4*f*h+g^2)^(1/2)))/(-4*f*h+g^2)^(1/2)+ln(e*((b*x+a)/(d*x+c))^n)*ln(1-2*(c^2*h-c*d*g+d^2*f)*(b*x+a)/(d*x+c)/(
2*b*d*f-b*c*g-a*d*g+2*a*c*h+(-a*d+b*c)*(-4*f*h+g^2)^(1/2)))/(-4*f*h+g^2)^(1/2)-n*polylog(2,2*(c^2*h-c*d*g+d^2*
f)*(b*x+a)/(d*x+c)/(2*b*d*f-b*c*g-a*d*g+2*a*c*h-(-a*d+b*c)*(-4*f*h+g^2)^(1/2)))/(-4*f*h+g^2)^(1/2)+n*polylog(2
,2*(c^2*h-c*d*g+d^2*f)*(b*x+a)/(d*x+c)/(2*b*d*f-b*c*g-a*d*g+2*a*c*h+(-a*d+b*c)*(-4*f*h+g^2)^(1/2)))/(-4*f*h+g^
2)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.52, antiderivative size = 545, normalized size of antiderivative = 1.36, number of steps used = 19, number of rules used = 7, integrand size = 31, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.226, Rules used = {2513, 2418, 2394, 2393, 2391, 618, 206} \[ \frac {n \text {PolyLog}\left (2,\frac {2 h (a+b x)}{2 a h-b \left (g-\sqrt {g^2-4 f h}\right )}\right )}{\sqrt {g^2-4 f h}}-\frac {n \text {PolyLog}\left (2,\frac {2 h (a+b x)}{2 a h-b \left (\sqrt {g^2-4 f h}+g\right )}\right )}{\sqrt {g^2-4 f h}}-\frac {n \text {PolyLog}\left (2,\frac {2 h (c+d x)}{2 c h-d \left (g-\sqrt {g^2-4 f h}\right )}\right )}{\sqrt {g^2-4 f h}}+\frac {n \text {PolyLog}\left (2,\frac {2 h (c+d x)}{2 c h-d \left (\sqrt {g^2-4 f h}+g\right )}\right )}{\sqrt {g^2-4 f h}}+\frac {2 \tanh ^{-1}\left (\frac {g+2 h x}{\sqrt {g^2-4 f h}}\right ) \left (-\log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )+n \log (a+b x)-n \log (c+d x)\right )}{\sqrt {g^2-4 f h}}+\frac {n \log (a+b x) \log \left (-\frac {b \left (-\sqrt {g^2-4 f h}+g+2 h x\right )}{2 a h-b \left (g-\sqrt {g^2-4 f h}\right )}\right )}{\sqrt {g^2-4 f h}}-\frac {n \log (a+b x) \log \left (-\frac {b \left (\sqrt {g^2-4 f h}+g+2 h x\right )}{2 a h-b \left (\sqrt {g^2-4 f h}+g\right )}\right )}{\sqrt {g^2-4 f h}}-\frac {n \log (c+d x) \log \left (-\frac {d \left (-\sqrt {g^2-4 f h}+g+2 h x\right )}{2 c h-d \left (g-\sqrt {g^2-4 f h}\right )}\right )}{\sqrt {g^2-4 f h}}+\frac {n \log (c+d x) \log \left (-\frac {d \left (\sqrt {g^2-4 f h}+g+2 h x\right )}{2 c h-d \left (\sqrt {g^2-4 f h}+g\right )}\right )}{\sqrt {g^2-4 f h}} \]

Antiderivative was successfully verified.

[In]

Int[Log[e*((a + b*x)/(c + d*x))^n]/(f + g*x + h*x^2),x]

[Out]

(2*ArcTanh[(g + 2*h*x)/Sqrt[g^2 - 4*f*h]]*(n*Log[a + b*x] - Log[e*((a + b*x)/(c + d*x))^n] - n*Log[c + d*x]))/
Sqrt[g^2 - 4*f*h] + (n*Log[a + b*x]*Log[-((b*(g - Sqrt[g^2 - 4*f*h] + 2*h*x))/(2*a*h - b*(g - Sqrt[g^2 - 4*f*h
])))])/Sqrt[g^2 - 4*f*h] - (n*Log[c + d*x]*Log[-((d*(g - Sqrt[g^2 - 4*f*h] + 2*h*x))/(2*c*h - d*(g - Sqrt[g^2
- 4*f*h])))])/Sqrt[g^2 - 4*f*h] - (n*Log[a + b*x]*Log[-((b*(g + Sqrt[g^2 - 4*f*h] + 2*h*x))/(2*a*h - b*(g + Sq
rt[g^2 - 4*f*h])))])/Sqrt[g^2 - 4*f*h] + (n*Log[c + d*x]*Log[-((d*(g + Sqrt[g^2 - 4*f*h] + 2*h*x))/(2*c*h - d*
(g + Sqrt[g^2 - 4*f*h])))])/Sqrt[g^2 - 4*f*h] + (n*PolyLog[2, (2*h*(a + b*x))/(2*a*h - b*(g - Sqrt[g^2 - 4*f*h
]))])/Sqrt[g^2 - 4*f*h] - (n*PolyLog[2, (2*h*(a + b*x))/(2*a*h - b*(g + Sqrt[g^2 - 4*f*h]))])/Sqrt[g^2 - 4*f*h
] - (n*PolyLog[2, (2*h*(c + d*x))/(2*c*h - d*(g - Sqrt[g^2 - 4*f*h]))])/Sqrt[g^2 - 4*f*h] + (n*PolyLog[2, (2*h
*(c + d*x))/(2*c*h - d*(g + Sqrt[g^2 - 4*f*h]))])/Sqrt[g^2 - 4*f*h]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 2391

Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> -Simp[PolyLog[2, -(c*e*x^n)]/n, x] /; FreeQ[{c, d,
 e, n}, x] && EqQ[c*d, 1]

Rule 2393

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))]*(b_.))/((f_.) + (g_.)*(x_)), x_Symbol] :> Dist[1/g, Subst[Int[(a +
 b*Log[1 + (c*e*x)/g])/x, x], x, f + g*x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[e*f - d*g, 0] && EqQ[g
 + c*(e*f - d*g), 0]

Rule 2394

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))/((f_.) + (g_.)*(x_)), x_Symbol] :> Simp[(Log[(e*(f +
g*x))/(e*f - d*g)]*(a + b*Log[c*(d + e*x)^n]))/g, x] - Dist[(b*e*n)/g, Int[Log[(e*(f + g*x))/(e*f - d*g)]/(d +
 e*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, n}, x] && NeQ[e*f - d*g, 0]

Rule 2418

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_.)*(RFx_), x_Symbol] :> With[{u = ExpandIntegrand[
(a + b*Log[c*(d + e*x)^n])^p, RFx, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[{a, b, c, d, e, n}, x] && RationalFunct
ionQ[RFx, x] && IntegerQ[p]

Rule 2513

Int[Log[(e_.)*((f_.)*((a_.) + (b_.)*(x_))^(p_.)*((c_.) + (d_.)*(x_))^(q_.))^(r_.)]*(RFx_.), x_Symbol] :> Dist[
p*r, Int[RFx*Log[a + b*x], x], x] + (Dist[q*r, Int[RFx*Log[c + d*x], x], x] - Dist[p*r*Log[a + b*x] + q*r*Log[
c + d*x] - Log[e*(f*(a + b*x)^p*(c + d*x)^q)^r], Int[RFx, x], x]) /; FreeQ[{a, b, c, d, e, f, p, q, r}, x] &&
RationalFunctionQ[RFx, x] && NeQ[b*c - a*d, 0] &&  !MatchQ[RFx, (u_.)*(a + b*x)^(m_.)*(c + d*x)^(n_.) /; Integ
ersQ[m, n]]

Rubi steps

\begin {align*} \int \frac {\log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )}{f+g x+h x^2} \, dx &=n \int \frac {\log (a+b x)}{f+g x+h x^2} \, dx-n \int \frac {\log (c+d x)}{f+g x+h x^2} \, dx-\left (n \log (a+b x)-\log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )-n \log (c+d x)\right ) \int \frac {1}{f+g x+h x^2} \, dx\\ &=n \int \left (\frac {2 h \log (a+b x)}{\sqrt {g^2-4 f h} \left (g-\sqrt {g^2-4 f h}+2 h x\right )}-\frac {2 h \log (a+b x)}{\sqrt {g^2-4 f h} \left (g+\sqrt {g^2-4 f h}+2 h x\right )}\right ) \, dx-n \int \left (\frac {2 h \log (c+d x)}{\sqrt {g^2-4 f h} \left (g-\sqrt {g^2-4 f h}+2 h x\right )}-\frac {2 h \log (c+d x)}{\sqrt {g^2-4 f h} \left (g+\sqrt {g^2-4 f h}+2 h x\right )}\right ) \, dx-\left (2 \left (-n \log (a+b x)+\log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )+n \log (c+d x)\right )\right ) \operatorname {Subst}\left (\int \frac {1}{g^2-4 f h-x^2} \, dx,x,g+2 h x\right )\\ &=\frac {2 \tanh ^{-1}\left (\frac {g+2 h x}{\sqrt {g^2-4 f h}}\right ) \left (n \log (a+b x)-\log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )-n \log (c+d x)\right )}{\sqrt {g^2-4 f h}}+\frac {(2 h n) \int \frac {\log (a+b x)}{g-\sqrt {g^2-4 f h}+2 h x} \, dx}{\sqrt {g^2-4 f h}}-\frac {(2 h n) \int \frac {\log (a+b x)}{g+\sqrt {g^2-4 f h}+2 h x} \, dx}{\sqrt {g^2-4 f h}}-\frac {(2 h n) \int \frac {\log (c+d x)}{g-\sqrt {g^2-4 f h}+2 h x} \, dx}{\sqrt {g^2-4 f h}}+\frac {(2 h n) \int \frac {\log (c+d x)}{g+\sqrt {g^2-4 f h}+2 h x} \, dx}{\sqrt {g^2-4 f h}}\\ &=\frac {2 \tanh ^{-1}\left (\frac {g+2 h x}{\sqrt {g^2-4 f h}}\right ) \left (n \log (a+b x)-\log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )-n \log (c+d x)\right )}{\sqrt {g^2-4 f h}}+\frac {n \log (a+b x) \log \left (-\frac {b \left (g-\sqrt {g^2-4 f h}+2 h x\right )}{2 a h-b \left (g-\sqrt {g^2-4 f h}\right )}\right )}{\sqrt {g^2-4 f h}}-\frac {n \log (c+d x) \log \left (-\frac {d \left (g-\sqrt {g^2-4 f h}+2 h x\right )}{2 c h-d \left (g-\sqrt {g^2-4 f h}\right )}\right )}{\sqrt {g^2-4 f h}}-\frac {n \log (a+b x) \log \left (-\frac {b \left (g+\sqrt {g^2-4 f h}+2 h x\right )}{2 a h-b \left (g+\sqrt {g^2-4 f h}\right )}\right )}{\sqrt {g^2-4 f h}}+\frac {n \log (c+d x) \log \left (-\frac {d \left (g+\sqrt {g^2-4 f h}+2 h x\right )}{2 c h-d \left (g+\sqrt {g^2-4 f h}\right )}\right )}{\sqrt {g^2-4 f h}}-\frac {(b n) \int \frac {\log \left (\frac {b \left (g-\sqrt {g^2-4 f h}+2 h x\right )}{-2 a h+b \left (g-\sqrt {g^2-4 f h}\right )}\right )}{a+b x} \, dx}{\sqrt {g^2-4 f h}}+\frac {(b n) \int \frac {\log \left (\frac {b \left (g+\sqrt {g^2-4 f h}+2 h x\right )}{-2 a h+b \left (g+\sqrt {g^2-4 f h}\right )}\right )}{a+b x} \, dx}{\sqrt {g^2-4 f h}}+\frac {(d n) \int \frac {\log \left (\frac {d \left (g-\sqrt {g^2-4 f h}+2 h x\right )}{-2 c h+d \left (g-\sqrt {g^2-4 f h}\right )}\right )}{c+d x} \, dx}{\sqrt {g^2-4 f h}}-\frac {(d n) \int \frac {\log \left (\frac {d \left (g+\sqrt {g^2-4 f h}+2 h x\right )}{-2 c h+d \left (g+\sqrt {g^2-4 f h}\right )}\right )}{c+d x} \, dx}{\sqrt {g^2-4 f h}}\\ &=\frac {2 \tanh ^{-1}\left (\frac {g+2 h x}{\sqrt {g^2-4 f h}}\right ) \left (n \log (a+b x)-\log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )-n \log (c+d x)\right )}{\sqrt {g^2-4 f h}}+\frac {n \log (a+b x) \log \left (-\frac {b \left (g-\sqrt {g^2-4 f h}+2 h x\right )}{2 a h-b \left (g-\sqrt {g^2-4 f h}\right )}\right )}{\sqrt {g^2-4 f h}}-\frac {n \log (c+d x) \log \left (-\frac {d \left (g-\sqrt {g^2-4 f h}+2 h x\right )}{2 c h-d \left (g-\sqrt {g^2-4 f h}\right )}\right )}{\sqrt {g^2-4 f h}}-\frac {n \log (a+b x) \log \left (-\frac {b \left (g+\sqrt {g^2-4 f h}+2 h x\right )}{2 a h-b \left (g+\sqrt {g^2-4 f h}\right )}\right )}{\sqrt {g^2-4 f h}}+\frac {n \log (c+d x) \log \left (-\frac {d \left (g+\sqrt {g^2-4 f h}+2 h x\right )}{2 c h-d \left (g+\sqrt {g^2-4 f h}\right )}\right )}{\sqrt {g^2-4 f h}}-\frac {n \operatorname {Subst}\left (\int \frac {\log \left (1+\frac {2 h x}{-2 a h+b \left (g-\sqrt {g^2-4 f h}\right )}\right )}{x} \, dx,x,a+b x\right )}{\sqrt {g^2-4 f h}}+\frac {n \operatorname {Subst}\left (\int \frac {\log \left (1+\frac {2 h x}{-2 c h+d \left (g-\sqrt {g^2-4 f h}\right )}\right )}{x} \, dx,x,c+d x\right )}{\sqrt {g^2-4 f h}}+\frac {n \operatorname {Subst}\left (\int \frac {\log \left (1+\frac {2 h x}{-2 a h+b \left (g+\sqrt {g^2-4 f h}\right )}\right )}{x} \, dx,x,a+b x\right )}{\sqrt {g^2-4 f h}}-\frac {n \operatorname {Subst}\left (\int \frac {\log \left (1+\frac {2 h x}{-2 c h+d \left (g+\sqrt {g^2-4 f h}\right )}\right )}{x} \, dx,x,c+d x\right )}{\sqrt {g^2-4 f h}}\\ &=\frac {2 \tanh ^{-1}\left (\frac {g+2 h x}{\sqrt {g^2-4 f h}}\right ) \left (n \log (a+b x)-\log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )-n \log (c+d x)\right )}{\sqrt {g^2-4 f h}}+\frac {n \log (a+b x) \log \left (-\frac {b \left (g-\sqrt {g^2-4 f h}+2 h x\right )}{2 a h-b \left (g-\sqrt {g^2-4 f h}\right )}\right )}{\sqrt {g^2-4 f h}}-\frac {n \log (c+d x) \log \left (-\frac {d \left (g-\sqrt {g^2-4 f h}+2 h x\right )}{2 c h-d \left (g-\sqrt {g^2-4 f h}\right )}\right )}{\sqrt {g^2-4 f h}}-\frac {n \log (a+b x) \log \left (-\frac {b \left (g+\sqrt {g^2-4 f h}+2 h x\right )}{2 a h-b \left (g+\sqrt {g^2-4 f h}\right )}\right )}{\sqrt {g^2-4 f h}}+\frac {n \log (c+d x) \log \left (-\frac {d \left (g+\sqrt {g^2-4 f h}+2 h x\right )}{2 c h-d \left (g+\sqrt {g^2-4 f h}\right )}\right )}{\sqrt {g^2-4 f h}}+\frac {n \text {Li}_2\left (\frac {2 h (a+b x)}{2 a h-b \left (g-\sqrt {g^2-4 f h}\right )}\right )}{\sqrt {g^2-4 f h}}-\frac {n \text {Li}_2\left (\frac {2 h (a+b x)}{2 a h-b \left (g+\sqrt {g^2-4 f h}\right )}\right )}{\sqrt {g^2-4 f h}}-\frac {n \text {Li}_2\left (\frac {2 h (c+d x)}{2 c h-d \left (g-\sqrt {g^2-4 f h}\right )}\right )}{\sqrt {g^2-4 f h}}+\frac {n \text {Li}_2\left (\frac {2 h (c+d x)}{2 c h-d \left (g+\sqrt {g^2-4 f h}\right )}\right )}{\sqrt {g^2-4 f h}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.35, size = 515, normalized size = 1.28 \[ \frac {\log \left (-\sqrt {g^2-4 f h}+g+2 h x\right ) \log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )-\log \left (\sqrt {g^2-4 f h}+g+2 h x\right ) \log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )-n \text {Li}_2\left (\frac {b \left (-g-2 h x+\sqrt {g^2-4 f h}\right )}{2 a h+b \left (\sqrt {g^2-4 f h}-g\right )}\right )+n \text {Li}_2\left (\frac {b \left (g+2 h x+\sqrt {g^2-4 f h}\right )}{b \left (g+\sqrt {g^2-4 f h}\right )-2 a h}\right )-n \log \left (-\sqrt {g^2-4 f h}+g+2 h x\right ) \log \left (\frac {2 h (a+b x)}{2 a h+b \sqrt {g^2-4 f h}+b (-g)}\right )+n \log \left (\sqrt {g^2-4 f h}+g+2 h x\right ) \log \left (\frac {2 h (a+b x)}{2 a h-b \left (\sqrt {g^2-4 f h}+g\right )}\right )+n \text {Li}_2\left (\frac {d \left (-g-2 h x+\sqrt {g^2-4 f h}\right )}{-g d+\sqrt {g^2-4 f h} d+2 c h}\right )-n \text {Li}_2\left (\frac {d \left (g+2 h x+\sqrt {g^2-4 f h}\right )}{d \left (g+\sqrt {g^2-4 f h}\right )-2 c h}\right )+n \log \left (-\sqrt {g^2-4 f h}+g+2 h x\right ) \log \left (\frac {2 h (c+d x)}{2 c h+d \sqrt {g^2-4 f h}+d (-g)}\right )-n \log \left (\sqrt {g^2-4 f h}+g+2 h x\right ) \log \left (\frac {2 h (c+d x)}{2 c h-d \left (\sqrt {g^2-4 f h}+g\right )}\right )}{\sqrt {g^2-4 f h}} \]

Antiderivative was successfully verified.

[In]

Integrate[Log[e*((a + b*x)/(c + d*x))^n]/(f + g*x + h*x^2),x]

[Out]

(-(n*Log[(2*h*(a + b*x))/(-(b*g) + 2*a*h + b*Sqrt[g^2 - 4*f*h])]*Log[g - Sqrt[g^2 - 4*f*h] + 2*h*x]) + Log[e*(
(a + b*x)/(c + d*x))^n]*Log[g - Sqrt[g^2 - 4*f*h] + 2*h*x] + n*Log[(2*h*(c + d*x))/(-(d*g) + 2*c*h + d*Sqrt[g^
2 - 4*f*h])]*Log[g - Sqrt[g^2 - 4*f*h] + 2*h*x] + n*Log[(2*h*(a + b*x))/(2*a*h - b*(g + Sqrt[g^2 - 4*f*h]))]*L
og[g + Sqrt[g^2 - 4*f*h] + 2*h*x] - Log[e*((a + b*x)/(c + d*x))^n]*Log[g + Sqrt[g^2 - 4*f*h] + 2*h*x] - n*Log[
(2*h*(c + d*x))/(2*c*h - d*(g + Sqrt[g^2 - 4*f*h]))]*Log[g + Sqrt[g^2 - 4*f*h] + 2*h*x] + n*PolyLog[2, (d*(-g
+ Sqrt[g^2 - 4*f*h] - 2*h*x))/(-(d*g) + 2*c*h + d*Sqrt[g^2 - 4*f*h])] - n*PolyLog[2, (b*(-g + Sqrt[g^2 - 4*f*h
] - 2*h*x))/(2*a*h + b*(-g + Sqrt[g^2 - 4*f*h]))] + n*PolyLog[2, (b*(g + Sqrt[g^2 - 4*f*h] + 2*h*x))/(-2*a*h +
 b*(g + Sqrt[g^2 - 4*f*h]))] - n*PolyLog[2, (d*(g + Sqrt[g^2 - 4*f*h] + 2*h*x))/(-2*c*h + d*(g + Sqrt[g^2 - 4*
f*h]))])/Sqrt[g^2 - 4*f*h]

________________________________________________________________________________________

fricas [F]  time = 1.47, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\log \left (e \left (\frac {b x + a}{d x + c}\right )^{n}\right )}{h x^{2} + g x + f}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(log(e*((b*x+a)/(d*x+c))^n)/(h*x^2+g*x+f),x, algorithm="fricas")

[Out]

integral(log(e*((b*x + a)/(d*x + c))^n)/(h*x^2 + g*x + f), x)

________________________________________________________________________________________

giac [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(log(e*((b*x+a)/(d*x+c))^n)/(h*x^2+g*x+f),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

maple [F]  time = 0.86, size = 0, normalized size = 0.00 \[ \int \frac {\ln \left (e \left (\frac {b x +a}{d x +c}\right )^{n}\right )}{h \,x^{2}+g x +f}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(ln(e*((b*x+a)/(d*x+c))^n)/(h*x^2+g*x+f),x)

[Out]

int(ln(e*((b*x+a)/(d*x+c))^n)/(h*x^2+g*x+f),x)

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: ValueError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(log(e*((b*x+a)/(d*x+c))^n)/(h*x^2+g*x+f),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(4*f*h-g^2>0)', see `assume?` f
or more details)Is 4*f*h-g^2 positive or negative?

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {\ln \left (e\,{\left (\frac {a+b\,x}{c+d\,x}\right )}^n\right )}{h\,x^2+g\,x+f} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(log(e*((a + b*x)/(c + d*x))^n)/(f + g*x + h*x^2),x)

[Out]

int(log(e*((a + b*x)/(c + d*x))^n)/(f + g*x + h*x^2), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(ln(e*((b*x+a)/(d*x+c))**n)/(h*x**2+g*x+f),x)

[Out]

Timed out

________________________________________________________________________________________